Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Rong Su* and Duan-Jun Xu
Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: sujr2401@hotmail.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.039$
$w R$ factor $=0.097$
Data-to-parameter ratio $=10.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

The co-crystal tetraaquabis(2-oxido-3,5-dinitro-benzoato)bis(2-oxido-3,5-dinitrobenzoic acid)tri-copper-diaquabis(2-hydroxy-3,5-dinitrobenzoato)-(2-oxido-3,5-dinitrobenzoic acid)copper-water (0.54/0.92/4): a reformulation?

In the title compound, $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{0.54}\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{0.92} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}^{\text {II }}$ ion located on an inversion centre has a fractional site occupancy of 0.54 . When this $\mathrm{Cu}^{\mathrm{II}}$ ion is present, a trinuclear complex also involving two adjacent $\mathrm{Cu}^{\text {II }}$ ions arises; when it is not, then the result is two discrete mononuclear complexes. A very similar structure was reported previously by Valigura, Melnık, Koman, Martiŝka, Korabik, Mroziński \& Glowiak [Inorg. Chem. Commun. (2004), 7, 548-552]. However, in their material, arising from a different synthesis, the $\mathrm{Cu}^{\mathrm{II}}$ ion with $\overline{1}$ site symmetry is fully occupied, and thus only a trinuclear complex is formed. Here, the mononuclear $\mathrm{Cu}^{\mathrm{II}}$ complex assumes a square-pyramidal coordination geometry, formed by two water molecules and two 3,5-dinitrosalicylate anions, one of which is monodentate and the other bidentate.

Comment

The structures and properties of multinuclear complexes have attracted much scientific attention, due to their potentially useful electronic or magnetic properties (Holton et al., 1983). As part of our investigations of multinuclear complexes ($\mathrm{Su} \&$ Xu, 2005), the title compound, (I) (Figs. 1 and 2), has been prepared and its crystal structure is presented here. We interpret it as a co-crystal of two differerent types of Cu complex.

(I)

The Cu 1 atom of $\overline{1}$ site symmetry in (I) has a fractional site occupancy of 0.54 . When Cu 1 is present, a centrosymmetric trinuclear $\mathrm{Cu}^{\mathrm{II}}$ complex (Fig. 1) also involving two nearby Cu 2 species arises. When Cu 1 is absent, then a mononuclear complex containing Cu 2 (Fig. 2) is the result. The ligand molecule containing atom C 11 is bridging in the trinuclear complex and terminal (to Cu 2) in the mononuclear complex.

Received 8 June 2005
Accepted 1 July 2005
Online 9 July 2005

Figure 1
The centrosymmetric trinuclear $\mathrm{Cu}^{\mathrm{II}}$ complex obtained when atom Cu 1 is present [symmetry code: (iv) $-x, 1-y, 1-z$]. Dashed lines indicate hydrogen bonding. Displacement ellipsoids are drawn at the 30% probability level.

A very similar structure was reported previously by Valigura et al. (2004a). However, in their study, the Cu1 site is fully occupied, and only a trinuclear complex is present. It should be noted that the syntheses are different: the present study began from a 1:1 molar ratio of Cu and 3,5-dinitrosalicylic acid in the presence of sodium carbonate, while Valigura et al. (2004b) began from a 1:2 Cu:ligand ratio without any added base. Analytical data from Valigura et al. (2004b) support the existence of the trinuclear complex (i.e. the Cu1 site fully occupied) and their structure does not show any anomalous atomic displacement parameters that might correlate with unmodelled partial site occupancies for some of the atoms.

The structure of the trinuclear complex in (I) is the same as that reported previously. In the mononuclear complex, the Cu 2 atom is coordinated by two water molecules and two 3,5dinitrosalicylate anions, one monodentate and one bidentate, resulting in a square-pyramidal coordination geometry. The hydroxy group of the phenolate monoanion is disordered and occupies two positions (Fig. 2). Both disordered hydroxy groups form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (Table 2). Because of the complex disorder in this co-crystal, some of the H -atom positions and partial site occupancies should be regarded as tentative.

Experimental

All reagents were of analytical grade and used as received. $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(0.17 \mathrm{~g}, \quad 1 \mathrm{mmol})$, 3,5 -dinitrosalicylic acid $(0.25 \mathrm{~g}$, $1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.05 \mathrm{~g}, 0.5 \mathrm{mmol})$ were dissolved in water $(10 \mathrm{ml})$. The solution was refluxed for 5 h , then cooled to room

Figure 2
The mononulear $\mathrm{Cu}^{\text {II }}$ complex obtained when atom Cu 1 is not present. Dashed lines show the minor disordered component. Displacement ellipsoids are drawn at the 30% probability level.
temperature and filtered. Slow evaporation of the resulting filtrate yielded dark-green single crystals of (I) after 6 d .

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right)_{2}-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{0.54}\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}\right)_{2^{-}}\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{0.92} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1212.89$
Monoclinic, $P 2_{1} / c$
$a=10.8491$ (3) \AA
$b=14.2301$ (3) \AA
$c=13.3928$ (3) \AA
$\beta=94.671$ (1) ${ }^{\circ}$
$V=2060.76(9) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.647, T_{\max }=0.802$
16047 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0308 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.097$
$S=1.20$
3725 reflections
349 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 12$	$1.975(2)$	$\mathrm{Cu} 2-\mathrm{O} 11$	$1.946(2)$
$\mathrm{Cu} 1-\mathrm{O} 3 A$	$1.845(3)$	$\mathrm{Cu} 2-\mathrm{O} 21$	$1.951(2)$
$\mathrm{Cu} 2-\mathrm{O} 1$	$2.372(3)$	$\mathrm{Cu} 2-\mathrm{O} 23$	$1.906(2)$
$\mathrm{Cu} 2-\mathrm{O} 2$	$1.920(2)$		
$\mathrm{O} 12-\mathrm{Cu} 1-\mathrm{O} 3 A$	$89.81(11)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 11$	$93.91(10)$
$\mathrm{O} 12-\mathrm{Cu} 1-\mathrm{O} 3 A^{\mathrm{i}}$	$90.19(11)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 21$	$90.73(10)$
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 2$	$95.72(11)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 23$	$169.99(12)$
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 11$	$94.12(10)$	$\mathrm{O} 11-\mathrm{Cu} 2-\mathrm{O} 21$	$172.32(10)$
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 21$	$91.51(9)$	$\mathrm{O} 11-\mathrm{Cu} 2-\mathrm{O} 23$	$83.65(10)$
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 23$	$94.14(10)$	$\mathrm{O} 21-\mathrm{Cu} 2-\mathrm{O} 23$	$90.74(9)$
Symmery			

Symmetry code: (i) $-x,-y+1,-z+1$.

metal-organic papers

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 17^{\text {ii }}$	0.90	2.26	2.943 (4)	133
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 24^{\text {ii }}$	0.90	2.51	3.239 (3)	139
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{O} 27^{\mathrm{iii}}$	0.91	2.03	2.916 (3)	164
$\mathrm{O} 2-\mathrm{H} 3 \cdots \mathrm{O}{ }^{W}$	0.88	1.71	2.579 (4)	169
$\mathrm{O} 2-\mathrm{H} 4 \cdots \mathrm{O} 12$	0.86	2.08	2.742 (3)	133
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 2 W$	0.81	2.27	2.954 (4)	143
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 16^{\text {iv }}$	0.88	2.19	2.889 (4)	136
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 15^{\mathrm{i}}$	0.88	2.51	3.226 (4)	139
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {ii }}$	0.82	1.99	2.775 (3)	159
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 23^{\text {ii }}$	0.89	2.16	2.949 (3)	148
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 24^{\text {ii }}$	0.89	2.20	2.903 (3)	136
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 2 W$	0.89	1.64	2.532 (3)	178
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 12$	0.92	1.83	2.698 (4)	157
$\mathrm{O} 3 B-\mathrm{H} 3 B \cdots \mathrm{O} 1 W^{v}$	0.91	2.64	3.423 (16)	145

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $x, y+1, z ;(\mathrm{v})-x+1,-y+1,-z+1$.

Modelling atom Cu 1 with full occupancy resulted in a very large displacement parameter, suggesting partial site occupancy. The fractional site occupancy of Cu 1 was refined and rapidly converged to 0.536 (2), and was fixed at 0.54 in the final cycles of refinement. The hydroxy O atom of the carboxylate anion occurred in two positions and the occupancies converged to 0.826 (3) and 0.174 (3) for atoms $\mathrm{O} 3 A$ and $\mathrm{O} 3 B$, respectively. They were fixed at 0.8 and 0.2 in the final cycles of refinement. Thus, the occupancies of atoms H17 and H13 were also fixed at 0.8 and 0.2 , respectively. The occupancies of atoms $\mathrm{H} 3 A$ and $\mathrm{H} 3 B$ were fixed at 0.26 and 0.2 , respectively. In this way, the charge of (I) becomes zero. H atoms on the aromatic rings were
placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier). Other H atoms (including $\mathrm{H} 3 A$ and $\mathrm{H} 3 B$) were located in a difference map and refined as riding in their as-found relative positions, with a fixed isotropic displacement parameter of $0.08 \AA^{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Holton, J., Lappert, M. F., Pearce, R. \& Yarrow, P. I. W. (1983). Chem. Rev. 83, 135-155.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Su, J.-R. \& Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.
Valigura, D., Melnık, M., Koman, M., Martiŝka, L., Korabik, M., Mroziński, J. \& Glowiak, T. (2004a). Inorg. Chem. Commun. 7, 548-552.
Valigura, D., Melnık, M., Koman, M., Martiŝka, L., Korabik, M., Mroziński, J. \& Glowiak, T. (2004b). Polyhedron, 23, 2447-2456.

[^0]: (C) 2005 International Union of Crystallography

